E7. Equation Summary

(1) Future value, annual compounding

$$FV = PV(1+r)^n$$

(2) Future value, general compounding

$$FV = PV \left(1 + \frac{r}{m}\right)^{mn}$$

(3) Effective annual interest rate (APY)

$$r_e = \left(1 + \frac{r}{m}\right)^m - 1$$

(4) Future value, continuous compounding

$$FV = PVe^{rn}$$

 $PV = \frac{FV}{(1+r)^n}$

(5-6) Future value of:

(5) Annuity (Deposit/pmt gets no interest)

$$FV = PMT \left(\frac{(1+r)^n - 1}{r} \right)$$

(6) Annuity due (Deposit/pmt does earn interest)

 $FV = PMT \left(\frac{(1+r)^n - 1}{r} \right) (1+r)$

- (9-10) Present value of: (Required nest egg to live off *PMT* in retirement)
- (9) Annuity $PV = PMT \left(\frac{(1+r)^n - 1}{r(1+r)^n} \right)$
- (10) Annuity due $PV = PMT \left(\frac{(1+r)^{n} - 1}{r(1+r)^{n-1}} \right)$

- (11) Annuity payments for: (Required payment for simple interest loan)
- (11a) Annuity PV $PMT = PV \left(\frac{r(1+r)^n}{(1+r)^n - 1} \right)$
- (11b) Annuity due PV $PMT = PV \left(\frac{r(1+r)^{n-1}}{(1+r)^n - 1} \right)$

- (12) Annuity payments for: (Required annual savings to reach nest egg)
- (12a) Annuity FV
- (12b) Annuity due FV

- $PMT = FV\left(\frac{r}{(1+r)^n 1}\right) \qquad PMT = FV\left(\frac{r}{(1+r)^n 1}\right)\left(\frac{1}{1+r}\right)$
- (14) Net present value of series of cash flows

 $PV = \frac{PMT}{r}$

 $NPV = \sum_{i=0}^{n} \frac{C_i}{(1+r)^i}$

(15) Internal Rate of Return (Yield)

r that solves NPV = 0

FV = future value where: PV = present value

PMT = uniform payment/investment each period m = number of periods of compounding per year

n = number of years of compounding

r = annual interest rate (APR)

 r_e = effective annual interest rate (APY)

e = natural logarithm (2.71828)

 C_i = cash flow in year i